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Abstract 

A set of equations is derived to describe mathematically the isotope distribution 
in the separation process of displacement chromatography. Emphasis is placed 
on nonsteady-state isotope accumulation in the boundary region of a migration 
band. The results indicate that the isotope profile in the migration band is 
expressed by 

where R, E, k, Ro, L, and x are local isotope fraction, separation coefficient, slope 
coefficient, original isotope fraction, migration length, and position in the band, 
respectively. Mathematical treatment is extended to the determination of HETP 
of experimental systems. The relation between the frontal isotope ratio r, and the 
migration length is also obtained. The validity of the derived equations is verified 
by using the reported experimental data on boron isotope separation by ion- 
exchange chromatography. 

*To whom correspondence should be addressed. 
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378 FUJI1 ET AL. 

INTRODUCTION 

Isotope separation by ion-exchange chromatography has been ex- 
tensively studied while seeking its practical application to the production 
of enriched isotopes. The remarkable success in "N isotope enrichment 
by this method was described by Spedding ( I ) .  Regarding the mechanism 
of the enrichment process, Glueckauf developed a theory for chromato- 
graphic isotope separation based on two-phase equilibrium (2, 3). 
Kakihana derived equations for isotope separation by displacement 
chromatography based on the concept of individual isotopic mass flows 
in a generalized homogeneous medium (4, 5). A numerical method was 
reported by Fujine (6) and Calusaru (8), and analytical work was done by 
Jacques on displacement enrichment (7). 

Most of the above-mentioned work has been successfully applied to 
low-enrichment isotope separation systems; however there has been 
ambiguity and inconvenience in the application of the theories to highly 
enriched systems. The only empirical equation for highly enriched 
systems was obtained by Glueckauf (3) and applied to I5N isotope 
separation reported by Spedding. There are specific difficulties in the 
general treatment of the nonsteady-state isotope separation process when 
it is continuously developing from low degrees to high degrees of 
enrichment. In the present paper the authors derive a convenient 
equation applicable to the nonsteady-state enrichment process covering a 
wide range of enrichment degrees. The equations derived are useful in 
estimating the feasibility of the enrichment systems experimentally 
considered. 

THEORY 

Displacement chromatography is an efficient process for obtaining 
enriched isotopes. This operation is characterized by sharp band 
boundaries at the migration band ends. In the present work we mainly 
deal with displacement operating in a breakthrough manner where the 
sharp boundary is at the front end. 

In a chromatographic separation system, one isotope species, e.g., 
isotope A, moves forward faster than does the other isotope. To formulate 
the separation process, treatment usually commences with setting up a 
fundamental diffusion equation for one of the species and then solving 
the equation under the appropriate conditions. This mathematical 
treatment is pertinent when isotopes A and B behave as independent 
species. In the case of displacement chromatography, species A and B 
interfere with each other: an increase in the concentration of A is always 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 379 

coupled with a decrease in the concentration of By since the total 
concentration is strictly fixed in the migration band. To express such a 
coupled movement it is relevant to consider the relative movement of the 
species involved rather than the independent movement of the species. 
This consideration corresponds to chemical treatment in which one of 
the isotopes is chosen as the reference material, in contrast to the usual 
pattern of using the medium as the reference. 

Fundamental Equation 

The total concentration of isotopes in a migration band is a constant, 
COY 

where subscripts A and B denote the isotopes, and R is isotope fraction of 
A. Equation ( 1 )  is used for breakthrough migration. This relation is 
applicable within the limited width of the band in the case of fixed band 
migration. Using the terms in Eq. (l), the isotope ratio is defined as 

(2) r = C,/C, = Rl(1  - R )  

The isotope enrichment process in the migration band is interpreted in 
such a way that (a) the enrichment flow originates from the inherent 
isotope effect involved in the system, (b) part of the enrichment flow is 
canceled by a diffusion flow induced by the gradient of isotopic 
concentration, (c) the enrichment flow is partly consumed in increasing 
the concentration of the isotope of concern (namely the holdup), and (d) 
the rest of the enrichment flow forward through the migration band as a 
potential product flow. 

To consider each microscopic flow component, we set up equations 
based on the relative flow difference between isotopes A and B. The flux 
of each isotopic flow is expressed by 

where VA and V, are the overall migration velocities of isotopes A and B. 
Based on the concept of isotope effect in the process, the enrichment flow 
is written as 
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Since the isotope effect in the system is defined as 

the enrichment flow is expressed as 

FUJI1 ET AL. 

(4) 

where E is the separation coefficient of the system. 
The relative diffusion flow is usually given in the form 

where DA and D B  are the self-diffusion coefficients of the given isotopes. 
This equation is applicable when each flow moves independently. In the 
case where the total concentration is constant, the difference in the 
diffusion flows of isotopes induces a compensating flow that cancels the 
imbalance in the diffusion flow. To avoid this complexity, we obtained a 
more strictly applicable equation to express the relative diffusion flow 
(Appendix I ) :  

The relative holdup flow used to change the isotope concentration in the 
narrow region Ax at position x is given by 

Thus we obtain the production flow as 

To simplify the mathematical expression, we introduce a dimensionless 
equation obtained by dividing Eq. (7) by the flux of isotope B, (PB, 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 381 

. Jp  = JE + JD + Jh 

= Er - Ddrldx - 2(Ax/C,VB)dC,ldt (8) 

Equation (8) is the fundamental equation. To apply it to the actual 
separation systems, we consider three typical cases of the operational 
state. 

1. Steady State. In this state the separation process proceeds without 
concentration changes in the system. Moreover, no production is 
obtained since the production flow is totally canceled by macroscopic 
diffusion between the enriched part and the depleted part in the 
separation system. Therefore, this state is expressed by J p  = Jh = 0. This 
leads to 

2. Quasi-Steady StateIDynamic Steady State. The dynamic steady state 
corresponds to the nomal mode of operation of chemical separation 
plants. The plants are operated under the condition of constant 
productivity and no holdup change; that is, Jp = constant and Jh = 0. 
When this mathematical model is applied to a microscopic or momenta1 
mass balance in a kinetic process, this state usually refers to a quasi- 
steady state. The fundamental equation for the quasi-steady state or the 
dynamic steady state is accordingly given by 

JE + .ID = constant (10) 

3. Nonsteady State. In general, nonsteady-state displacement enrich- 
ment refers to the separation process operated under the total reflux 
condition with no production; namely, Jp = 0. We obtain the general 
relation for this state as 

Equation (1 1) is a partial differential equation. It is extremely difficult to 
solve the equation for general conditions. Only in limited cases of, for 
example, low degrees of enrichment is Eq. (11) solved with some 
approximations. In such cases, Eq. (1 1) is expressed in terms of isotope 
fraction R, and becomes of the same type as the equation previously 
studied (3, 4). 
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382 FUJI1 ET AL. 

Isotopic Concentration Functions 

Steady-state isotope enrichment is attained by long distance migration 
with a narrow band. The mathematical treatments for this state have 
been well studied (1, 9-12). In the present paper a brief description is 
made of this process to compare it with nonsteady state enrichment. The 
fundamental equation for this state is given by Eq. (9), which is written 
as 

Er - (D/V)dr /dx  = 0 (9') 

By integrating Eq. (9') under the condition r = r,, at x = x,,, with the terms 
E, D, and Y constant, we obtain the isotopic concentration function for 
steady-state enrichment as 

where k, refers to the slope coefficient of the steady state, ro is the original 
isotope ratio, and xn is the position in the band where the isotope ratio 
is equal to r, 

The nonsteady-state enrichment process, on the other hand, is 
described in principle by Eq. (11). Due to the previously mentioned 
difficulties in obtaining a general solution of Eq. ( I l ) ,  we propose the 
concept of stepwise enrichment in migration. The migration band moves 
forward, building a new frontal microsegment. During the short period of 
the stepwise formation of a new segment, the isotopic concentration in 
the migration band is assumed to remain intact and the product flow 
discharged from the front band deposits in the new segment. This process 
is regarded as the momenta1 or quasi-steady state, which suggests that Eq. 
(10) is applicable to this system in place of Eq. (1 1). On the basis of the 
above assumption, we obtain the equation for the nonsteady-state 
enrichment by solving Eq. (10) under the conditions r = r,, and dr/& = 0 
at x = 0, with E ,  D, and V constant: 

Furthermore, it is of interest to examine the state of the extreme front 
segment where the product flow deposits are converted to the holdup 
flow. This state is expressed by 

J p  = Jh (14) 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 383 

Combination of Eqs. (8) and (14) leads to 

JE + JD = 0 

This equation is the same as one previously obtained for the steady state, 
Ey. (9). This means that the steady-state model is applicable to the 
extreme front segment in the nonsteady state. 

Using the same conditions as for Eq. (13), and paying attention to the 
region near the front band end whose position is indicated by the 
migration length L, we obtain the isotopic concentration function as 

(1  3') - To = - L )  

k = EV/D, g = rL - ro 

where k is the slope coefficient of the function for nonsteady-state 
enrichment and r, is the isotope ratio at the front end. It should be noted 
that the value of exp ( -kL),  obtained by substitutingx = 0 in Eq. (13'), is 
approximated to be zero, since isotope enrichment is observed after 
sufficiently long migrations. Equation (13') clearly indicates that plotting 
of In ( r  - ro) against (x - L )  for experimental data yields a linear line with 
a slope of k despite the migration length or the extent of enrichment. 

To visualize the profile of isotope accumulation at the front band 
region, it is necessary to express the term g by other operational factors. 
For this purpose Eq. (13') is rearranged using the term for isotope fraction 
R in place of isotope ratio r: 

R - Ro = ( 1  - Ro)2gek(x - ')/{( 1 + (1 - Ro)gek(x ~ L ) )  (15) 

As presented in Appendix 11, the integral of Eq. (15) between x = 0 and L 
leads to 

Hence, we obtain the isotope profile for the enrichment at the nonsteady- 
state as 

R = 1 - (1 - R,,)/{l  + (eEkROL - l)ek("-L)) (17) 

Equation (17) is part of an S-shaped function in the range Ro < R < 1: a 
complete S-shape is obtained when L = co. This function has a sym- 
metric center at the deflection point R = ( I  + R,)/2. 
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384 FUJI1 ET AL. 

In the early stage of enrichment, where R deviates slightly from R, 
(namely, &kR& << I), Eq. (17) is simplified to 

Equation (18) is exactly the same as the one previously derived for a low 
enrichment system (23), based on the theory presented by Kakihana et al. 
(4). 

HETP 

The height equivalent to the theoretical plate, HETP, of chromato- 
graphic separation systems is denoted by H and defined as 

Hdrfdx = Er (19) 

Equation (19) is rearranged to 

d In rfdx = EfH (19') 

The HETP defined by  Eq. (19) is an  indicator of the steepness of the 
isotopic concentration function as expressed in terms of In r. 

At the steady-state enrichment, HETP is easily related to the slope 
coefficient. The combination of Eqs. (12) and (19) leads to 

The value of HETP or the slope of In r is constant over the entire region 
of the migration band. 

In the case of nonsteady-state enrichment, the slope of In r increases 
with an increase o f x  and reaches a maximum value at the band front 
x = L. The maximum slope at the band front is specific to the given 
separation system and is expected to be kept constant through the entire 
process from low enrichment to high enrichment under the nonsteady 
state. As mentioned in the preceding section, the steady-state model 
JE + JD = 0 holds in the extreme front segment of the nonsteady-state 
enrichment system. Thus we obtain 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 385 

From Eq. (13'), [a' In r / ~ ! x ] , = ~  = k(rL - ro)/rL, and by the combination of 
this relation and Eq. (21), the slope coefficient is given as 

Substitution of Eq. (16) into Eq. (22) leads to 

H = &rL/k(rL - r,,) = ( I  + R,,/(e"'& - I)]&/k (23) 

When the enrichment degree is low (namely, ekR& << l),  Eq. (23) is 
simplified to 

H = ( 4 k )  + ( l/k2L) (24) 

In the case of a highly enriched system, the curve of In r in the nonsteady 
state approaches the asymptote of the line for the steady-state enrich- 
ment. This fact is explained by the relation 

d In rldx = k(r - ro ) / r  = k,v(r - ro)rL/r(rL - yo )  ( 2 5 )  

Within the region where rL 2 r >> r,,, the slope of In r can be approximated 
by k,T. 

Estimation of Required Migration Length and Enrichment Width 

To examine the feasibility of a certain chromatographic enrichment 
system, one has to know the migration length required to obtain the 
desired degree of enrichment. The relation between the maximum 
enrichment degree at the band front and the migration length is given 
from Eq. (17) by 

RL = 1 - (1 - RO)/eEkROL 

or 

The migration length is also expressed by using HETP instead of the 
slope Coefficient k. The combination of Eqs. (22) and (26) leads to 
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386 FUJI1 ET AL. 

The plant equilibrium time t (the time required to reach the production 
stage from start-up) is simply given by 

t = LIV (28) 

In the present derivation we assume that isotopic composition takes its 
original value at the starting point x = 0, and differs from the original in 
all other places in the migration band. For most of the migration band, 
however, isotope composition practically appears as a plateau with an 
isotope ratio of approximately r, If we define the enriched part as the 
area where the isotope ratio is higher than the original value by at least a 
factor of E, then the width of the enriched part for the nonsteady-state 
system, W, is obtained by substituting the relations x - L = -W and 
r = (1 + &)r0 in Eq. (13') and using Eqs. (16), (22), and (26): 

APPLICATION 

In order to examine the validity of the equation derived in the present 
work, the experimental data reported were analyzed by using the derived 
equations. 

Sakuma et al. studied the enrichment of 'OB isotope by anion-exchange 
chromatography carried out in a reverse breakthrough operation (14). In 
this work, natural boron in the form of boric acid was fed into separation 
columns packed with weakly basic anion-exchange resin, and then the 
adsorbed boron was eluted by displacement by pure water, forming a 
sharp boundary at the rear end. By recyclic use of packed columns (1  m 
long) connected in series, chromatographic migrations were performed 
up to 256 m. After migration the eMuents were subjected to mass- 
spectrometry analysis, and the isotope ratios of "B and "B were 
determined. 

To apply the equations derived in the present paper, the isotope profile 
in the effluent was converted to the isotope profile in the migration band 
in the column at migration length L.  Figure 1 shows plots of the isotope 
ratio In (r - ro) against the distance (x - L )  in the ion-exchange column. 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 387 

I 

Distance (x-L) / cm 
FIG. 1 .  The relation between the isotope enrichment degree In (r - 10) and the distance 
from the band end (x - L). System: Boron isotope separation by displacement anion- 
exchange chromatography (experimental data are from Ref. 14). Migration length: 1-256 m 

as indicated for each run. Original isotope ratio 10 = 0.2475. 

The linearity of the plots for each run indicates both the validity of Eq. 
(13') and the constancy of the slope coefficient k over the entire enriched 
zone region. It was also found that the value of k depends on the 
migration length. By using Eq. (23), the values of HETP for different 
migration lengths were calculated. They are presented in Fig. 2 along 
with the values of k determined by using the plots in Fig. 1. Figure 2 
clearly shows that the HETP of different migration lengths is constant 
over a wide range of migration lengths (from 2 to 128 m). Deviations in 
HETP values were found in the extreme cases, i.e., migration lengths of 1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



388 FUJll ET AL. 

- 0.4- 
‘E 
V 

Y 
- 
2 0.3 
a, 
U 

Q, 

.- 
c .t 

s 0.2- 

i3 

9, 
Q -  
0 

0.1 

0’58 

- 
c 

- 
0 

0 

-0- 

0 1  ’ 1 1 1 I I 1 1 1 1  I 1 I I 1  1 1 1 1  I I 1  

I 5 10 50 100 5 
Migration length L / m 

3.3 
E u - 

1.2 o. 
l- 
w 

3.1 

0 
0 

FIG. 2. HETPs and slope coefficients ( k )  of the boron isotope separation by displacement 
anion-exchange chromatography. (0) k determined by the plotting in Fig. 1 .  (0) HETP 
calculated by HETP = ~ r L / k ( r ~  - ro), E = 0.01, ro = 0.2475, rI, = experimental isotope ratio 

at band end, from Ref. 14. The dashed line is the average of the HETPs, 0.18 cm. 

and 256 m. In the case of 1 m migration, chromatography was carried out 
by using a single column only without any connecting columns. 
Presumably, this is the prime reason for the small HETP value. On the 
other hand, in the case of 256 m migration, there was an interruption in 
the operation due to mechanical trouble in the apparatus (15). This may 
be the reason for the large HETP value at 256 m. This process of anion- 
exchange chromatography has the advantage of operational stability for 
mechanical troubles. When trouble happens, the supply of eluent and the 
circulation of thermostated water are stopped immediately. Then the 
column temperature decreases, which causes adsorption of the exchange 
resin for the boron ions in the solution phase. Thus, isotope remixing is 
lowered. When the trouble is eliminated, the temperature is elevated to 
the operational level and normal conditions are reestablished for 
chromatographic migration. 

By using the same experimental study for boron isotope separation, the 
validity of Eqs. (26) and (29) was examined. Figure 3 depicts (a) the 
relation between maximum enrichment at the band end and the 
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Isotope ratio rL(loB/llB) at band end 

FIG. 3. Migration length and enrichment width in the number of theoretical plates vs 
isotope ratio at the band end. Solid curves are calculated for the boron isotope separation 
system with E = 0.01, r0 = 0,2475. Experimental data cited from Ref. 14. (0) Migration length 
LIHETP, (0) enrichment width WIHETP. Ups were determined by the plots in Fig. 1. 

HETP’s used are shown in Fig. 2. 

migration length expressed in terms of the stage number (LIH), and (b) 
the relation between the width of the enriched part in WlH and 
maximum enrichment at the band end. The curves were drawn by using 
the specific values of the experimental system, E = 0.01 and Ro = 0.1984. 
The plots in Fig. 3 are experimentally observed values. It is seen that the 
experimental values are in good agreement with the calculated ones. 

In the present analysis procedure for chromatographic isotope sepa- 
ration, if R,, H, and RL are given, the required length of migration L and 
the slope coefficient k are readily calculated by using Eqs. (22) and (27). 
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FUJI1 ET AL. 390 

In the similar case where L is given but RL is unknown, it is necessary to 
calculate R , ~  by a graphical method or by a computer method employing 
Eq. (27). Figure 3 is a typical example where R ,  is read against a given 
value of LIH. 

CONCLUSION 

A fundamental equation for flow balance in isotope separation by 
chromatography was formulated based on the concept of relative 
movement of isotopes in the enrichment and diffusion processes. 

By introducing the quasi-steady-state model of constant production 
flow, the fundamental equation was solved for nonsteady-state isotope 
accumulation at the front boundary region of a displacement migration. 
The equation derived can cover a wide range of degrees of isotope 
enrichment. 

The mathematical treatments were extended to find the relations 
between the slope coefficient k and HETP, between the migration length 
L and the maximum enrichment degree RL, and between RL and the width 
of the enriched part W. 

The validity of the derivation was ascertained by the application of the 
derived equations to experimental data reported for boron isotope 
separation by displacement anion-exchange chromatography. The 
HETP of the experimental system examined was calculated to be 0.18 
cm. 

APPENDIX 

I. To consider the diffusion of enriched isotopes, we introduce the 
concept of relative diffusion between isotopes A and B. In the same way 
as in the derivation of Fick’s law in the thermodynamics of irreversible 
processes, we start with the chemical potentials of isotopes: 

pA = pi + R*T In CA, pg = pi + R*T In CB (A-1) 

where R* is the gas constant and T is the absolute temperature. Taking B 
as the reference state material, the chemical potential of A to B is 
given as 
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ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 391 

The driving force of diffusion for this process is expressed as 

and the flux of diffusion, qD, is expressed as 

where o is the mobility of the given species. 

this process, D, we obtain the following diffusion flux: 
Since the product of o, R*, and T is equal to the diffusion coefficient of 

11. Equation (15) is integrated between the starting pointx = 0 and the 
migration front end x = L. 

- In ( 1  - (1  - R,)ge-kL))  (A-6) 

Equation (9) indicates that the term ge-kL on the right-hand side of Eq. 
(A-6) is practically zero at x = 0. Regarding the integral of the left-hand 
side, we can make use of the well-known equation used to determine the 
single-stage separation factor S,  or separation coefficient E ,  first derived 
by Spedding et al. (1,): 

where i denotes the fraction number, 7 is the volume of the fraction, C is 
total concentration of isotopes, and Q is the total effective ion-exchange 
capacity of the isotopes treated. This equation was initially derived for the 
system where the separation column length is fixed and an isotope 
analysis was done on the effluent emerging from the column. On the 
basis of a different concept of isotopic migration in a homogeneous 
medium, Kakihana derived the same type of equation as Eq. (A-7) for the 
system where isotope distribution in the migration medium is known by 
direct sampling (26). In this case the amount of isotopes in the migration 
medium is used instead of the amount in the effluent, expressed by Cp, in 
Eq. (A-7). 
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392 FUJI1 ET AL. 

When the total concentration of isotopes is constant throughout the 
migration band and the sampling width is sufficiently narrow, that is, 
C,T+ = C,Ax and Q = C&, Eq. (A-7) is rearranged to 

E = [ ( R  - R,)dx/LR,(l  - R") ('4-8) 

Combining Eqs. (A-6) and (A-8), we obtain 
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