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Abstract

A set of equations is derived to describe mathematically the isotope distribution
in the separation process of displacement chromatography. Empbhasis is placed
on nonsteady-state isotope accumulation in the boundary region of a migration
band. The results indicate that the isotope profile in the migration band is
expressed by

R=1-(1=Ro)/{] + (e*RoF — 1)ektx 1)

where R, &, k, Ry, L, and x are local isotope fraction, separation coefficient, slope
coefficient, original isotope fraction, migration length, and position in the band,
respectively. Mathematical treatment is extended to the determination of HETP
of experimental systems. The relation between the frontal isotope ratio r; and the
migration length is also obtained. The validity of the derived equations is verified
by using the reported experimental data on boron isotope separation by ion-
exchange chromatography.

*To whom correspondence should be addressed.
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INTRODUCTION

Isotope separation by ion-exchange chromatography has been ex-
tensively studied while seeking its practical application to the production
of enriched isotopes. The remarkable success in “N isotope enrichment
by this method was described by Spedding (/). Regarding the mechanism
of the enrichment process, Glueckauf developed a theory for chromato-
graphic isotope separation based on two-phase equilibrium (2, 3).
Kakihana derived equations for isotope separation by displacement
chromatography based on the concept of individual isotopic mass flows
in a generalized homogeneous medium (4, 5). A numerical method was
reported by Fujine (6) and Calusaru (8), and analytical work was done by
Jacques on displacement enrichment (7).

Most of the above-mentioned work has been successfully applied to
low-enrichment isotope separation systems; however there has been
ambiguity and inconvenience in the application of the theories to highly
enriched systems. The only empirical equation for highly enriched
systems was obtained by Glueckauf (3) and applied to “N isotope
separation reported by Spedding. There are specific difficulties in the
general treatment of the nonsteady-state isotope separation process when
it is continuously developing from low degrees to high degrees of
enrichment. In the present paper the authors derive a convenient
equation applicable to the nonsteady-state enrichment process covering a
wide range of enrichment degrees. The equations derived are useful in
estimating the feasibility of the enrichment systems experimentally
considered.

THEORY

Displacement chromatography is an efficient process for obtaining
enriched isotopes. This operation is characterized by sharp band
boundaries at the migration band ends. In the present work we mainly
deal with displacement operating in a breakthrough manner where the
sharp boundary is at the front end.

In a chromatographic separation system, one isotope species, e.g.,
isotope A, moves forward faster than does the other isotope. To formulate
the separation process, treatment usually commences with setting up a
fundamental diffusion equation for one of the species and then solving
the equation under the appropriate conditions. This mathematical
treatment is pertinent when isotopes A and B behave as independent
species. In the case of displacement chromatography, species A and B
interfere with each other: an increase in the concentration of A is always
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coupled with a decrease in the concentration of B, since the total
concentration is strictly fixed in the migration band. To express such a
coupled movement it is relevant to consider the relative movement of the
species involved rather than the independent movement of the species.
This consideration corresponds to chemical treatment in which one of
the isotopes is chosen as the reference material, in contrast to the usual
pattern of using the medium as the reference.

Fundamental Equation

The total concentration of isotopes in a migration band is a constant,
COa

CatCg=Cy, (0<x<L) ()
Co=CR  Cy=Cyl —R)

where subscripts A and B denote the isotopes, and R is isotope fraction of
A. Equation (1) is used for breakthrough migration. This relation is
applicable within the limited width of the band in the case of fixed band
migration. Using the terms in Eq. (1), the isotope ratio is defined as

r=C,/Cy=R/(1 —R) (2)

The isotope enrichment process in the migration band is interpreted in
such a way that (a) the enrichment flow originates from the inherent
isotope effect involved in the system, (b) part of the enrichment flow is
canceled by a diffusion flow induced by the gradient of isotopic
concentration, (c) the enrichment flow is partly consumed in increasing
the concentration of the isotope of concern (namely the holdup), and (d)
the rest of the enrichment flow forward through the migration band as a
potential product flow.

To consider each microscopic flow component, we set up equations
based on the relative flow difference between isotopes A and B. The flux
of each isotopic flow is expressed by

Oa = CaVy, O = CplVy 3)

where V, and ¥y are the overall migration velocities of isotopes A and B.
Based on the concept of isotope effect in the process, the enrichment flow
is written as
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Adp = Ca(Va — V) (4)
Since the isotope effect in the system is defined as
e=(Vy—Vp)/Vp
the enrichment {low is expressed as
Ady = eCL Vg (5)

where ¢ is the separation coefficient of the system.
The relative diffusion flow is usually given in the form

Aq)l) = - (DAdCA/dx - DBdCB/dx)

where D, and Dy are the self-diffusion coefficients of the given isotopes.
This equation is applicable when each flow moves independently. In the
case where the total concentration is constant, the difference in the
diffusion flows of isotopes induces a compensating flow that cancels the
imbalance in the diffusion flow. To avoid this complexity, we obtained a
more strictly applicable equation to express the relative diffusion flow
(Appendix 1):

A¢D = _DCBd(CA/CB)/dx (6)

The relative holdup flow used to change the isotope concentration in the
narrow region Ax at position x is given by

A, = —Ax(dC,/dr — dCy/dt) = —2AxdC,/dt
Thus we obtain the production flow as

Avp= Adg + Adp + Ao,
= SCAVB - DCBd(CA/CB)/dx - 2AXdCA/dt (7)

To simplify the mathematical expression, we introduce a dimensionless
equation obtained by dividing Eq. (7) by the flux of isotope B, ¢,

Jp=Adp/dp Jg = Abp/Os Jp = Abp/p Jyn = Ad,/0p
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JP=JE+JD+J;,
= gr — Ddr/dx — 2(Ax/CgVy)dC A/dt (8)

Equation (8) is the fundamental equation. To apply it to the actual
separation systems, we consider three typical cases of the operational
state.

1. Steady State. In this state the separation process proceeds without
concentration changes in the system. Moreover, no production is
obtained since the production flow is totally canceled by macroscopic
diffusion between the enriched part and the depleted part in the
separation system. Therefore, this state is expressed by J, = J, = 0. This
leads to

Je+Jp=0 9

2. Quasi-Steady State/Dynamic Steady State. The dynamic steady state
corresponds to the nomal mode of operation of chemical separation
plants. The plants are operated under the condition of constant
productivity and no holdup change; that is, J, = constant and J, = 0.
When this mathematical model is applied to a microscopic or momental
mass balance in a kinetic process, this state usually refers to a quasi-
steady state. The fundamental equation for the quasi-steady state or the
dynamic steady state is accordingly given by

Jg + Jp = constant (10)

3. Nonsteady State. In general, nonsteady-state displacement enrich-
ment refers to the separation process operated under the total reflux
condition with no production; namely, J, = 0. We obtain the general
relation for this state as

Je+Jp+J,=0 (11)

Equation (11) is a partial differential equation. It is extremely difficult to
solve the equation for general conditions. Only in limited cases of, for
example, low degrees of enrichment is Eq. (11) solved with some
approximations. In such cases, Eq. (11) is expressed in terms of isotope
fraction R, and becomes of the same type as the equation previously
studied (3, 4).
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Isotopic Concentration Functions

Steady-state isotope enrichment is attained by long distance migration
with a narrow band. The mathematical treatments for this state have
been well studied (I, 9-12). In the present paper a brief description is
made of this process to compare it with nonsteady state enrichment, The
fundamental equation for this state is given by Eq. (9), which is written
as

er — (D/VYdr/dx = 0 9"

By integrating Eq. (9') under the condition r = r, at x = x,, with the terms
g, D, and V constant, we obtain the isotopic concentration function for
steady-state enrichment as

r = reeks =0, k.=¢V/D (12)

where k, refers to the slope coefficient of the steady state, 7, is the original
isotope ratio, and x, is the position in the band where the isotope ratio
is equal to r.

The nonsteady-state enrichment process, on the other hand, is
described in principle by Eq. (11). Due to the previously mentioned
difficulties in obtaining a general solution of Eq. (11), we propose the
concept of stepwise enrichment in migration. The migration band moves
forward, building a new frontal microsegment. During the short period of
the stepwise formation of a new segment, the isotopic concentration in
the migration band is assumed to remain intact and the product flow
discharged from the front band deposits in the new segment. This process
is regarded as the momental or quasi-steady state, which suggests that Eq.
(10) is applicable to this system in place of Eq. (11). On the basis of the
above assumption, we obtain the equation for the nonsteady-state
enrichment by solving Eq. (10) under the conditions = ry and dr/dx = 0
at x = 0, with €, D, and ¥ constant:

er — (D/V)dr/dx = gr, (13)
Furthermore, it is of interest to examine the state of the extreme front

segment where the product flow deposits are converted to the holdup
flow. This state is expressed by

Jp =T, (14)
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Combination of Egs. (8) and (14) leads to
JE + ‘]D = O

This equation is the same as one previously obtained for the steady state,
Eq. (9). This means that the steady-state model is applicable to the
extreme front segment in the nonsteady state.

Using the same conditions as for Eq. (13), and paying attention to the
region near the front band end whose position is indicated by the
migration length L, we obtain the isotopic concentration function as

r—ry=ge-b (13"

k = eV/D, g=r—rn

where k is the slope coefficient of the function for nonsteady-state
enrichment and r, is the isotope ratio at the front end. It should be noted
that the value of exp (—kL), obtained by substitutingx = 0 in Eq. (13), is
approximated to be zero, since isotope enrichment is observed after
sufficiently long migrations. Equation (13') clearly indicates that plotting
of In (r — ry) against (x — L) for experimental data yields a linear line with
a slope of k despite the migration length or the extent of enrichment.

To visualize the profile of isotope accumulation at the front band
region, it is necessary to express the term g by other operational factors.
For this purpose Eq. (13') is rearranged using the term for isotope fraction
R in place of isotope ratio r:

R — Ry = (1 = Ro)’ge*™ ~P/{(1 + (1 — Ro)ge"™ ")) (15)

As presented in Appendix I1, the integral of Eq. (15) betweenx = 0and L
leads to

g = (e5fh = 1)/(1 = Ry) (16)

Hence, we obtain the isotope profile for the enrichment at the nonsteady-
state as

R=1-(1—=Ry/{1 + (et — [)e**~ 1) a7n
Equation (17) is part of an S-shaped function in the range R, <R < 1: a

complete S-shape is obtained when L = c. This function has a sym-
metric center at the deflection point R = (1 + R)/2.
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In the early stage of enrichment, where R deviates slightly from R,
(namely, ekRoL < 1), Eq. (17) is simplified to

R = Ry + ekLRy(1 — Ry)e** 1 (18)

Equation (18) is exactly the same as the one previously derived for a low
enrichment system (/3), based on the theory presented by Kakihana et al.

.
HETP

The height equivalent to the theoretical plate, HETP, of chromato-
graphic separation systems is denoted by H and defined as

Hdr/dx = er (19)
Equation (19) is rearranged to
dinr/dx = ¢/H (199

The HETP defined by Eq. (19) is an indicator of the steepness of the
isotopic concentration function as expressed in terms of In 7.

At the steady-state enrichment, HETP is easily related to the slope
coefficient. The combination of Egs. (12) and (19) leads to

H=D/V = ¢/k, (20)

The value of HETP or the slope of In r is constant over the entire region
of the migration band.

In the case of nonsteady-state enrichment, the slope of In r increases
with an increase of x and reaches a maximum value at the band front
x = L. The maximum slope at the band front is specific to the given
separation system and is expected to be kept constant through the entire
process from low enrichment to high enrichment under the nonsteady
state. As mentioned in the preceding section, the steady-state model
Jg +Jp = 0 holds in the extreme front segment of the nonsteady-state
enrichment system. Thus we obtain

[dn ridx], ., = ¢/H = k, Q21
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From Eq. (13'), |[d In #/dx],., = k(r, — ry)/r;, and by the combination of
this relation and Eq. (21), the slope coefficient is given as

k =¢er /H(r, —ry) = kg/(r. — ro) (22)
Substitution of Eq. (16) into Eq. (22) leads to
H = er /k(r, — rg) = {1 + Ro/(e®ReL — )le/k (23)

When the enrichment degree is low (namely, kR, < 1), Eq. (23) is
simplified to

H = (g/k) + (1/k*L) (24)
In the case of a highly enriched system, the curve of In r in the nonsteady
state approaches the asymptote of the line for the steady-state enrich-
ment. This fact is explained by the relation
dinr/dx = k(r —ro)/r =kr — ror/r(r, = ro) (25)
Within the region where r, > r > r,, the slope of In r can be approximated
by k..
Estimation of Required Migration Length and Enrichment Width
To examine the feasibility of a certain chromatographic enrichment
system, one has to know the migration length required to obtain the
desired degree of enrichment. The relation between the maximum
enrichment degree at the band front and the migration length is given
from Eq. (17) by
R; =1 — (1 — Ry)/e**Fot
or

L = (1/ekRy) 1n {(1 = Rp)/(1 — R.)} (26)

The migration length is also expressed by using HETP instead of the
slope coefficient k. The combination of Egs. (22) and (26) leads to
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HQR, - Ry) In 1 - R, _ H(r, — ro)(1 + ry) In 1+r,

" eR(1 -R)R, 1 —-R, eryr, 1+r an

The plant equilibrium time ¢ (the time required to reach the production
stage from start-up) is simply given by

t=L/V (28)

In the present derivation we assume that isotopic composition takes its
original value at the starting point x = 0, and differs from the original in
all other places in the migration band. For most of the migration band,
however, isotope composition practically appears as a plateau with an
isotope ratio of approximately r, If we define the enriched part as the
area where the isotope ratio is higher than the original value by at least a
factor of ¢, then the width of the enriched part for the nonsteady-state
system, W, is obtained by substituting the relations x — L = —W and
r=(1+ &), in Eq. (13') and using Eqs. (16), (22), and (26):

W = H(r, — ro)(ery) ™" In (r, — ry)/(ery) (29)

APPLICATION

In order to examine the validity of the equation derived in the present
work, the experimental data reported were analyzed by using the derived
equations.

Sakuma et al. studied the enrichment of '°B isotope by anion-exchange
chromatography carried out in a reverse breakthrough operation (14). In
this work, natural boron in the form of boric acid was fed into separation
columns packed with weakly basic anion-exchange resin, and then the
adsorbed boron was eluted by displacement by pure water, forming a
sharp boundary at the rear end. By recyclic use of packed columns (1 m
long) connected in series, chromatographic migrations were performed
up to 256 m. After migration the effluents were subjected to mass-
spectrometry analysis, and the isotope ratios of B and "B were
determined.

To apply the equations derived in the present paper, the isotope profile
in the effluent was converted to the isotope profile in the migration band
in the column at migration length L. Figure 1 shows plots of the isotope
ratio In (r — ry) against the distance (x — L) in the ion-exchange column.
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F1G. 1. The relation between the isotope enrichment degree In (r — rp) and the distance

from the band end (x — L). System: Boron isotope separation by displacement anion-

exchange chromatography (experimental data are from Ref. /4). Migration length: 1-256 m
as indicated for each run. Original isotope ratio ry = 0.2475.

The linearity of the plots for each run indicates both the validity of Eq.
(13’y and the constancy of the slope coefticient k over the entire enriched
zone region. It was also found that the value of k depends on the
migration length. By using Eq. (23), the values of HETP for different
migration lengths were calculated. They are presented in Fig. 2 along
with the values of k determined by using the plots in Fig. 1. Figure 2
clearly shows that the HETP of different migration lengths is constant
over a wide range of migration lengths (from 2 to 128 m). Deviations in
HETP values were found in the extreme cases, i.e., migration lengths of 1
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F1G. 2. HETP’s and slope coefficients (k) of the boron isotope separation by displacement

anion-exchange chromatography. (O) k& determined by the plotting in Fig. 1. (O) HETP

calculated by HETP = er;/fk(ry, — rg), € = 0.01, ro = 02475, r; = experimental isotope ratio
at band end, from Ref. /4. The dashed line is the average of the HETP’s, 0.18 cm.

and 256 m. In the case of 1 m migration, chromatography was carried out
by using a single column only without any connecting columns.
Presumably, this is the prime reason for the small HETP value. On the
other hand, in the case of 256 m migration, there was an interruption in
the operation due to mechanical trouble in the apparatus (15). This may
be the reason for the large HETP value at 256 m. This process of anion-
exchange chromatography has the advantage of opcrational stability for
mechanical troubles. When trouble happens, the supply of eluent and the
circulation of thermostated water are stopped immediately. Then the
column temperature decreases, which causes adsorption of the exchange
resin for the boron ions in the solution phase. Thus, isotope remixing is
lowered. When the trouble is eliminated, the temperature is elevated to
the operational level and normal conditions are reestablished for
chromatographic migration.

By using the same experimental study for boron isotope separation, the
validity of Eqs. (26) and (29) was examined. Figure 3 depicts (a) the
relation between maximum enrichment at the band end and the



13: 23 25 January 2011

Downl oaded At:

ISOTOPE SEPARATION BY DISPLACEMENT CHROMATOGRAPHY 389

5 T T T T T T TTTT ﬁﬁlrlﬁ:
- 1
105k =
o 3
4 [ 1
o i A
n'lO"'.— =
o [ ]
O = -
= 5 |
@
el - 4
o
@ 8 B
£
bt 3
10 =
5 F ]
- [ N
g W/H ]
£ s J
3 ] |
r4
102 =
g ]
i ]
: 1
: 1
10‘ b1 i) Ll Lo L
03 1 10 100

Isotope ratio r_ ('°B/"'B) at band end

FiG. 3. Migration length and enrichment width in the number of theoretical plates vs
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system with ¢ = 0.01, ry = 0.2475. Experimental data cited from Ref. /4. (¢} Migration length

L/HETP, (O) enrichment width W/HETP. W's were determined by the plots in Fig. 1.
HETP’s used are shown in Fig, 2.

migration length expressed in terms of the stage number (L/H), and (b)
the relation between the width of the enriched part in W/H and
maximum enrichment at the band end. The curves were drawn by using
the specific values of the experimental system, & = 0.01 and R, = 0.1984.
The plots in Fig. 3 are experimentally observed values. It is seen that the
experimental values are in good agreement with the calculated ones.

In the present analysis procedure for chromatographic isotope sepa-
ration, if Ry, H, and R, are given, the required length of migration L and
the slope coefficient k are readily calculated by using Egs. (22) and (27).
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In the similar case where L is given but R; is unknown, it is necessary to
calculate R, by a graphical method or by a computer method employing
Eq. (27). Figure 3 is a typical example where R, is read against a given
value of L/H.

CONCLUSION

A fundamental equation for flow balance in isotope separation by
chromatography was formulated based on the concept of relative
movement of isotopes in the enrichment and diffusion processes.

By introducing the quasi-steady-state model of constant production
flow, the fundamental equation was solved for nonsteady-state isotope
accumulation at the front boundary region of a displacement migration.
The equation derived can cover a wide range of degrees of isotope
enrichment.

The mathematical treatments were extended to find the relations
between the slope coefficient £ and HETP, between the migration length
L and the maximum enrichment degree R, and between R, and the width
of the enriched part W.

The validity of the derivation was ascertained by the application of the
derived equations to experimental data reported for boron isotope
separation by displacement anion-exchange chromatography. The
HETP of the experimental system examined was calculated to be 0.18
cm.

APPENDIX

1. To consider the diffusion of enriched isotopes, we introduce the
concept of relative diffusion between isotopes A and B. In the same way
as in the derivation of Fick’s law in the thermodynamics of irreversible
processes, we start with the chemical potentials of isotopes:

UA=p2 +R*TInC,, pz=ul+R*TInCy (A-1)
where R* is the gas constant and T is the absolute temperature. Taking B
as the reference state material, the chemical potential of A to B is

given as

Map = pA — Up + R*T In C,/Cy (A-2)
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The driving force of diffusion for this process is expressed as
= —~du/dx (A-3)
and the flux of diffusion, ¢p, is expressed as
Op = 0C,F (A-4)

where o is the mobility of the given species.
Since the product of @, R*, and T is equal to the diffusion coefficient of
this process, D, we obtain the following diffusion flux:

0p = —DCpd(CA/Cg)/dx (A-5)

II. Equation (15) is integrated between the starting pointx = 0 and the
migration front end x = L.

f (R — Ry)dx = Q—_}C—M(ln {1+ (1 - Rygl

=1In {1 = (1 = Ro)ge™"}) (A-6)

Equation (9) indicates that the term ge ™" on the right-hand side of Eq.
(A-6) is practically zero at x = 0. Regarding the integral of the left-hand
side, we can make use of the well-known equation used to determine the
single-stage separation factor S, or separation coefficient ¢, first derived
by Spedding et al. (1):

e=8-1=ZCV(R - Ry)/QR(1 — Ry) (A-T7)

where i denotes the fraction number, v is the volume of the fraction, C is
total concentration of isotopes, and Q is the total effective ion-exchange
capacity of the isotopes treated. This equation was initially derived for the
system where the separation column length is fixed and an isotope
analysis was done on the effluent emerging from the column. On the
basis of a different concept of isotopic migration in a homogeneous
medium, Kakihana derived the same type of equation as Eq. (A-7) for the
system where isotope distribution in the migration medium is known by
direct sampling (/6). In this case the amount of isotopes in the migration
medium is used instead of the amount in the effluent, expressed by C¥, in
Eq. (A-7).
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When the total concentration of isotopes is constant throughout the

migration band and the sampling width is sufficiently narrow, that is,
Cy; = CoAx and Q = C,L, Eq. (A-7) is rearranged to

e= f (R — Ry)dx/LR(1 — Ry) (A-8)

Combining Egs. (A-6) and (A-8), we obtain

15.
16.

g = (e"Fot = 1)/(1 = Ry)
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